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In this paper, a linear analysis of the free-electron laser with a two-frequency undulator in the high-
gain regime is presented. The two-frequency undulator induces a beating wave in the electron’s longitu-
dinal motion, which results in many resonant points in phase space. As the electron’s beating wave
motion causes emission into many unstable modes, it reduces the maximum growth rate for the most un-
stable mode. Qur analysis shows that, under proper conditions, the ponderomotive phase velocity of the
most unstable mode may be reduced by the complex interferences between different resonant points,
leading to an efficiency enhancement. Moreover, optical guiding in this device is also studied. It is
found that the electron’s beating wave motion may reduce the refractive guiding and enhance the power

coupling coefficient of the most unstable mode.

PACS number(s): 41.60.Cr, 52.40.Mj, 52.75.Ms

I. INTRODUCTION

In a free-electron laser (FEL), a relativistic beam of
electrons passes through a periodic transverse magnetic
field, the undulator or wiggler, to produce coherent radia-
tion [1-3]. One of the main advantages of the FEL is
that it may provide a source of coherent radiation from
the far infrared to the vacuum ultraviolet region. To
reach the high-power Compton regime, however, FELs
are characterized by strong spectral broadenings [4,5].
Although some technical solutions have been implement-
ed [5], they may lead to severe drawbacks such as thresh-
old damage or nontunability. Recently, a FEL amplifier
in the configuration with a two-frequency undulator
(TFU) is suggested [6,7] in order to obtain a better extrac-
tion efficiency and a narrower radiation spectrum com-
pared with those provided by an ordinary (one-frequency)
undulator.

The TFU is taped by introducing a second frequency in
the undulator magnetic field to alter the dynamics of the
relativistic electrons. The period of the second frequency
(Ay,=2m/k,,) is assumed to be closed to that of the first
frequency (A, ,=2w/k,;). As a relativistic electron
passes through the TFU, it executes a beating wave
(Ay=2m/k,) in its longitudinal motion, where
k,=k,,—k,,. The electron’s longitudinal beating wave
motion (EBW) may modify the FEL dynamics in both a
linear regime and a nonlinear regime.

The effects of the EBW on the spontaneous emission
and on the stimulated emission in the low-gain regime
and saturation regime have been studied in Refs. [6,7]. In
this paper, we present a linear theory of the FEL
amplifier with a TFU. Our main purpose is to show the
effects of the EBW on the stimulated emission in the
high-gain regime and on optical guiding in this device.
This paper is organized as follows. First, in Sec. II a set
of one-dimensional nonlinear equations is developed to
describe the evolution of the radiation field in this device.
In Sec. III these nonlinear equations for the TFU FEL
are analyzed in the weak-field high-gain regime to evalu-
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ate the growth rate and the extraction efficiency. More-
over, optical guiding in the TFU FEL is studied in Sec.
IV. Finally, a summary is given in Sec. V.

II. BASIC DYNAMICS
OF THE FREE-ELECTRON LASER
WITH A TWO-FREQUENCY UNDULATOR

The TFU FEL consists of a relativistic beam of elec-
trons propagating parallel to a transverse magnetic field
with two periods. The magnetic field of the TFU may be
taken to be

B, =[B,,sin(k,z)+B,,sin(k,,,z)]§ , 2.1

where B,; and B,, are the amplitudes of the magnetic
field with respect to the first period and second period, re-
spectively, with B, <<B,;. Since the second period in-
duces a slow modulation of the first period, a TFU may
be designed by varying the magnetic amplitude of an or-
dinary undulator.

As a relativistic electron travels through the TFU, it
executes transverse oscillations, which may be expressed
by

vl=-%[K,cos(kwlz)+chos(szz)]’i , (2.2)
where K, =eB,,A,, /2mm,c? is the undulator strength pa-
rameter for /=1,2, y is the Lorentz factor of the relativ-
istic electron, c is the period of light, and m, and e are
the rest mass and charge of the electron, respectively.
The electron’s transverse motion directly couples to its
longitudinal motion and causes some fluctuations
(2k,, 1,2k, k1 + Koy kpy modulations) in its longitudinal
motion. Compared to the motion in an ordinary undula-
tor [8—11], the electron’s motion in the TFU has two
new features. The first is that the electron’s transverse
oscillations in a TFU are the sum of two terms corre-
sponding to the two undulator periods, respectively. Be-
cause B, <<B,,, this is not an essential feature, and then
the energy extraction from the relativistic electron beam
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corresponding to the second term of Eq. (2.2) may be
neglected. The second feature is the beating wave (k,
modulation) in the electron’s longitudinal motion. This is
the basic characteristic of the TFU FEL, which may
modify the FEL dynamics in both the linear regime and
the nonlinear regime. Therefore, we will focus our atten-
tion on the effects of the EBW on the FEL dynamics. In
addition, the electron’s longitudinal fast oscillations
(2kyy,2k 5, k1 Tk, modulations) may cause emission
into higher harmonics and reduce the gain of the funda-
mental, which is important in the harmonic generation in
the FEL [12,13]. For simplicity, we neglect the effects of
longitudinal fast oscillations on the FEL dynamics. As a
result, electron’s longitudinal trajectories may be written
as z=Z+ Az, where Z=T,t is the longitudinal location as-
suming that the electron has uniform longitudinal veloci-
ty v,=[1—(1+a2)/2y*]c, with a2=(K?+K?2)/2, and
the EBW is given by

Az=—K K ,sin(k,z)/2y%k, . 2.3)

Obviously, the EBW will yield an oscillation of the
electron’s phase, which is

kAz=—osin(k,z) , (2.4)

where 0 =K K,k,,, /k;, and k is the wave number of op-
tical field. Since bunching on the optical wavelength
scale is the key element of the stimulated emission pro-
cess, the EBW becomes important when its amplitude is
comparable to the optical wavelength A=2w/k. Thus
the FEL dynamics may be deeply modified by the EBW
when o= 1.

To study the resonant interaction between the relativis-
tic electrons and the optical field through the TFU, we
take the vector potential of the optical field to be

ES

A= TSin(kz —wt+@)X,
where E; and @ are the slowly varying optical amplitude
and phase, respectively, and o =kc is the optical frequen-
cy. The evolution of the optical field in the TFU is deter-
mined by the coupled Maxwell and Lorentz equations.
Following the classical technique [14], the coupled
Maxwell and Lorentz equations can be simplified to re-
duced nonlinear equations. In the limit of B,,<<B,,
one obtains

(2.5)

2
f;gs =[a,exp(i&,)+c.c. ]+«*o sin(kT) , (2.6)

4 = —(exp(—i£.,)) , 2.7)

dr

where §,=(k+k,)Z—wt, 7=Z/Lg, k=k,Lg, a
=E,explip)/V/ 4mm,c’yn,p is the dimensionless optical
wave amplitude, and Lg=A,,,/4mp is the gain length,
with p=v ~\(a,w, /4k,c)*”* and ©, =V 47n,e*/m, (n,
is the relativistic electron density). The combined equa-
tions (2.6) and (2.7) are valid in weak or strong optical
fields, for large or small gain, and for an arbitrary elec-
tron distribution. Compared to the equations for the or-
dinary undulator FEL [8-11], a new feature appears in
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these equations, which is the driving term of the pendu-
lum equation (2.6). When o =1, the driving term will al-
ter the nature of both the linear regime and the nonlinear
regime.

III. LINEAR ANALYSIS
OF THE FREE-ELECTRON LASER
WITH A TWO-FREQUENCY UNDULATOR

In the preceding section, we presented a general
description of the basic dynamics of the FEL amplifier
with a TFU. We now proceed to analyze the basic non-
linear equations (2.6) and (2.7) in the weak-field high-gain
regime. In this case, these nonlinear equations may be
linearized and the reference to the individual electron
phase can be explicitly removed. Expanding these equa-
tions and keeping to the first order of the optical ampli-
tude a,, one obtains

d .

T ! T’ " s r 7 1
;;_—as=1f0d7' fo dr"exp{i[vo(T—7")+ 0 sin(k7")

—o sin(k7)]}a ("),
(3.1

where vy=[(k +k,,)—w/U,]Ls is the initial energy de-
tuning. With the help of the integer-order Bessel func-
tion, Eq. (3.1) may be rewritten as

d _. &
R > J.loW, (o)

mn=—ow
T ’ ‘r’ ’ (3 2
Xfod'r fo dr'exp[—i(v,,7—v,7")]
(3.2)

where v, =vo—nk, with n=0,%1,%2,..., and J,, is the
Bessel function of the first kind and nth order. Obvious-
ly, Eq. (3.2) presents many resonant points (v, =0) in
phase space, which is a result of the linearized equation
of the forced pendulum equation (2.6) being a driven har-
monic oscillator equation. This is different from the
linearized equation for the conventional FEL, which
presents only one resonant point in phase space.

In the high-gain regime, the coherent radiation field
may get enough energy to grow exponentially. Then one
may assume that (3.2) has a solution of the form
a;, =agyexp( fo Bdr) and obtain

Xag ("),

a=i S S,(a+iv,)?, (3.3)

where a is defined as a=f(l;‘”d'rB(1')/Lw and the cou-
pling factor S, is given by

S,=i 3 Jm+,,(a)J,,(a)7nTiL—[1—exp(imkwa)].
w

(3.4)

Equation (3.3) is a general dispersion relation of the
high-gain TFU FEL, which clearly presents the effects of
the EBW on the FEL dynamics in the weak-field high-
gain regime. In the limit of o << 1, S, ~1 for n =0 and
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S, =0 for n7#0. Then Eq. (3.3) will be reduced to the
well-known cubic equation for the standard FEL or trav-
eling tube [10]. The validity of the dispersion relation re-
quires

;—Ta <(a+iv,) %. (3.5)
The condition Eq. (3.5) is generally lenient for k, L, = 2,
but becomes progressively restrictive as k, L, decreases.
Clearly, the condition k,L,, =27 may be satisfied easily
and then Eq. (3.3) is valid enough to describe the TFU
FEL in the weak-field high-gain regime.

For simplicity, we assume that k, L, >>27 in the fol-
lowing discussion. In this case, S, =J2(o), and Eq. (3.3)
presents one stable mode with Re(a)=0 and many unsta-
ble modes, either increasing modes with Re(a)> 0 or de-
creasing modes with Re(a)<0. Since our interest is in
the energy extraction from the relativistic electron beam,
we restrict our attention to the increasing mode. Here it
is worth examining the characteristics of Eq. (3.3) in the
limit of vp— — ©0. As vy— — o, Eq. (3.3) is reduced to

vo=—i 3 S,lativ,)"?,

n=—oc

(3.6)

in which many increasing and decreasing modes exist,
but there is only one increasing mode whose imaginary
part approaches —v, for vy— — . Therefore, we may
label the increasing mode whose imaginary part ap-
proaches —v, for vy— — o as the nth unstable mode for
the high-gain TFU FEL.

There are three regimes of the high-gain TFU FEL, de-
pending on the value of x. For k<<1, the maximum
growth rate of the zeroth mode (n=0) is much larger
than the growth rate of the others modes [Fig. 1(a)], and
the spectrum of the zeroth mode is similar to the usual
shape for the FEL with an ordinary undulator [8-11].
When k >>1, coupling is not possible between remote fre-
quencies, and then the general dispersion relation may be
reduced to

a=iS,(a+iv,)"? (3.7)

for the nth unstable mode. The spectrum of each unsta-
ble mode is similar to the well-known peak with a usual
shape [Fig. 1(c)], and the radiation frequency is peaked at

w,=[2v?/(1+a2) ]k, —nk,)c . (3.8)

As k=1, complex interferences occur between the
different resonant points. The spectrum of each mode is
deeply modified by the complex interferences [Fig. 1(b)].
From this one may conjecture that a TFU basically
modifies the high-gain FEL dynamics when the parame-
ter k is comparable to unity.

The eigenvalue a of the general dispersion equation
(3.3) greatly depends on the TFU parameters « and o.
Figure 2 provides an illustration in which the growth rate
Re(a) and the phase shift rate Im(a+iv,) of the most
unstable mode at resonance are shown. Figure 2(a) shows
that the growth rate of the most unstable mode decreases
with o. This is due to the EBW, which causes emission
into many unstable modes and reduces the growth rate of
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the most unstable mode. From Fig. 2(b), it can be seen
that there exists discontinuity on the phase shift rate sur-
face of the most unstable mode. This results from the
competition between the zeroth mode (n =0) and the
first mode (n =1). For small o and «, the growth rate of
the zeroth mode is much larger than the growth rates of
the other modes (n+0), and then the zeroth mode dom-
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FIG. 1. The growth rate Re(a) of the many increasing modes
is shown as a function of scaled energy detuning v, for (a)
k=0.4and o=1,(b)k=1and c =1, and (c) k=2 and 0 =1.
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inates the linear dynamics. As o increases, the maximum
growth rate of the first mode may increase to be larger
than the growth rate of the zeroth mode, and the linear
dynamics is dominated by first mode. The borderline of
the zeroth mode dominating domain and the first mode
dominating domain is plotted in Fig. 3. It is worth not-
ing that the growth rates of the higher modes
(n=2,3,4,...) may increase to be higher than those of
the lower modes (n =0, 1) as o is large enough. Then the
competition between higher modes may occur for a large
o. Moreover, it is found that the eigenvalue a of the
zeroth mode may be equal to that of the first mode under
a critical condition. The critical condition is plotted in
Fig. 4. We label the left- and right-hand side of the criti-
cal condition in the x and o planes as the first and the
second regimes, respectively. Our analysis shows that the
spectral shape of the zeroth mode exists as two peaks
when « and o are near the critical condition in the first
regime. As k and o approach to critical condition from
the first regime, the peak of the first mode approaches the
saddle between the two peaks of the zeroth mode. When
k and o reach the second regime, the spectral lines of the

Re(a)

F 7 7 7

FIG. 2. (a) The maximum growth rate Re(a) and (b) the
phase shift rate Im(a+iv,) of the most unstable mode is shown
as a function of x and o, where v, is chosen to maximize the
growth rate of the most unstable mode.
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FIG. 3. The borderline of the zeroth mode dominating
domain and the first mode dominating domain is shown.

two modes on the left-hand side of the cross points are
exchanged. This may be better clarified by Fig. 5, in
which we compare the growth rate of the zeroth mode
and the first mode for (a) k=0.6 and o =1.25 (solid lines)
and k=0.6 and 0 =1.27 (dashed lines) and (b) xk=0.9 and
o0=0.83 (solid lines) and k=0.9 and o=0.85 (dashed
lines). This is the mode transition between the zeroth
mode and the first mode in the high-gain TFU FEL. Our
numerical results also show that the mode transition be-
tween the higher modes may occur as o is large enough.
When « =0.76, the zeroth mode’s second peak is higher
than its first peak as k and o are near the critical condi-
tion in the first regime [Fig. 5(a)]. In this case, the bor-
derline of the zeroth mode dominating domain and the
first mode dominating domain is exactly equal to the crit-
ical condition of mode transition between the zeroth
mode and the first mode, and then the phase shift rate is
continued on both sides of the borderline. When
k>0.76, the zeroth mode’s first peak is higher than its
second peak as k and o are near the critical condition in
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FIG. 4. The critical condition that the eigenvalue a of the
zeroth mode is equal to the eigenvalue of the first mode, is plot-
ted.
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the first regime [Fig. 5(b)]. In this case, both sides of the
critical condition are dominated by the zeroth mode and
then the phase shift rate of the most unstable mode is
discontinued on the sides of the borderline of the zeroth
mode dominating domain and the first mode dominating
domain.

Next we will estimate the efficiency of the TFU FEL
based on the linear theory. Similar to the nonlinear satu-
ration of the ordinary undulator FEL [15], the nonlinear
saturation of TFU FEL may be expected to result from
the electron trapped by the ponderomotive potential
wells for the most unstable mode. The ponderomotive
phase of the nth unstable mode may be written as
EM=(k+k,,+nk,)z—wt. Then the ponderomotive

phase velocity of the nth mode may be expressed as
vif) =0y —2c[Im(a,)+v,]/(k +k, )L . (3.9)

If we assume that the mth mode is the most unstable
mode of the high-gain TFU FEL, the efficiency of a TFU
FEL may be estimated to be n=(7/0—y;,'{,’))/(y0—1),
where y;,’{,’)=[1—(v;,'§’/c)2]*]/2 and y, is the initial
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FIG. 5. The growth rate Re(a) of the zeroth mode (n =0)
and the first mode (n =1) is plotted as a function of energy de-
tuning v, for (a) k=0.6 and o =1.25 (solid lines) and k=0.6 and
o =1.27 (dash lines) and (b) x=0.9 and o =0.85 (solid lines) and
k=0.9 and 0 =0.85 (dash lines).
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FIG. 6. The efficiency factor ] corresponding to the most un-
stable mode versus the TFU parameter o for k=0.5 (solid line)
and «=0.6 (dashed line).

Lorentz factor of the relativistic electron. In the limit of
Y>> 1, the efficiency may be approximately expressed by

n=H/k,L¢ , (3.10)

with §=Im(e,,)+v,,. Equation (3.10) shows that the
efficiency of the TFU FEL is proportional to an efficiency
factor 7 and inverse to the gain length L; and the undu-
lator wave number k,,;. From the plot of Fig. 2(b), it can
be seen that the phase shift rate of the most unstable
mode increases with o in the zeroth mode dominating
domain for kK <0.76. This indicates that, under this con-
dition, the ponderomotive phase velocity of the most un-
stable mode (zeroth mode) decreases as o increases, re-
sulting in an efficiency enhancement. In addition, our nu-
merical results show that an efficiency enhancement may
be obtained under other conditions. Figure 6 provides an
illustration in which the efficiency factor 9 is plotted as a
function of o for k=0.5 (solid line) and 0.6 (dashed line).
The plots in Fig. 6 indicate that the efficiency enhance-
ment also occurs in the first regime when o approaches
the critical condition of the mode transition between the
first mode and the second mode. Therefore, one may
conjecture that the EBW may reduce the phase velocity
of the ponderomotive phase for the most unstable mode
and enhance the efficiency of the FEL under proper con-
ditions.

IV. OPTICAL GUIDING
IN THE FREE-ELECTRON LASER
WITH A TWO-FREQUENCY UNDULATOR

In a one-dimensional analysis of the FEL, the optical
field, the undulator, and the relativistic electrons reso-
nantly couple so as to alter the longitudinal wave number
of the optical field. This resonant interaction can result
in radiation focusing in the FEL [16—18]. In this section,
we study optical guiding in the TFU FEL and focus our
attention on the effects of the EBW on optical guiding in
the weak-field high-gain regime. For simplicity, we treat
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the bunching electron beam as if it were an optical fiber
with a constant index of refraction and a step edge. The
fiber in our analysis consists of a bunched electron beam
core of radius r;, an index of refraction n.,, and a free-
space cladding of index n=1. The index of refraction
of an optically bunched electron beam core may be writ-
ten as [19]

e kLga,

myn=—

In analogy to the one-dimensional case, assuming that
a,=ay(rlexp[ [ 7B(7)d 7], one gets

(4.3)

It is known that such an optical fiber always has at
least one guided mode, the LP,; mode [20], which is ex-
pected to be the dominant mode of a FEL [10,11]. There-
fore, we restrict our attention to the LP, mode, for
which

Jolxr/ry) for r<r,

Y= DH(x,r/ry) forr>ry, .4

where D =Jy(x)/Hy(X,), and H, is the Hankel function
of the first kind and zeroth order. The complex parame-
ters ¥ and x, are determined by the equations

XJox) _ xpHolX,)
Jo(X) HO(XP)

Xz—XzEV2=(ngo'—l)k2r(2) R

=R , (4.5)

(4.6)

where V is the “normalized frequency parameter” or “V
number” of the fiber. Thus a can be expressed in terms of
X,» Which is

a=x2Lg/(2ikr}) . @.7)

For simplicity, we can make the assumption that the
fiber is weakly guiding, i.e., |n., — 1| << 1. This inequality
is quite good for all cases of interest and is consistent
with the assumption of a slowly varying optical field.
Within the confines of this approximation, the ¥ number
may be expressed by

V’=—C 3 S§,0:-%,)7%, (4.8)

n=-—oo

where the dimensionless parameters 9, =2kr3v, /Lg and
C=4k 3r§ /L3. The coupled equations (4.5)—(4.8) give a
formulation of optical guiding in the linear high-gain re-
gime TFU FEL. In the limit of o0 <<1, these equations
will reduce to the well-known ordinary equations [16,17].
Equations (4.5)—(4.8) present many resonant points in the
phase space and there are many growth modes in the
three-dimensional TFU FEL as well as that in the one-
dimensional case. The index of the refraction for each

> Jm(U)J,,(a)fOTdT’fofd'r"exp[—i(vmr—-v,,f")]as(f") .
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n o—1=—2L1 4, _ i
e ikLga, dv ° kLga,

(exp(—i&,)) , @.1
where £, is determined by the forcing pendulum equation
(2.6) as in the one-dimensional case. Expanding Egs. (2.6)
and (4.1) and keeping to the first order of the optical am-
plitude a,, one obtains

(4.2)

r

unstable mode is generally different from those of the
others, which results in a different refractive guide for
each mode. This can clearly be understood by inspecting
Fig. 7, in which we have plotted the growth rate and the
V number of the n=0,%+1,+2 modes of the three-
dimensional results about the parameter C for k=1 and
o =1. Obviously, optical guiding effects in the high-gain
TFU FEL are greatly dependent upon the dimensionless
parameter C, like that in the high-gain FEL with an ordi-
nary undulator [16,17]. For small C, the growth rate is
much smaller than the one-dimensional result, since radi-
ated light would rapidly diffract out of the electron beam
before it can get amplified much. For large C, the

Pygggderre bl
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FIG. 7. (a) The V number and (b) maximum growth rate
Re(a) of the many modes, as determined by three-dimensional
theory, are shown as a function of the parameter Cfor o=1and
k=1, where v, is chosen to maximize the growth rate of each
mode.
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diffractive effects may be relatively unimportant and the
optical field is strongly trapped in the beam volume;
therefore, growth rate approaches the one-dimensional
value.

It is worth expressing the per-pass gain of the high-
gain TFU FEL in the form

G=G,,exp[(2L, /L;)Re(a,,)], (4.9)

corresponding to the most unstable mode, the mth mode.
Here G,, is known as the power coupling coefficient cor-
responding to the most unstable mode with the growth
rate Re(a,,), which is determined by the initial condi-
tion. Following the Green’s function methods exploited
by Moore [16,17] in the high-gain three-dimensional FEL
theory, one may obtain the coefficient G,,, which is given
by

G,=IT,1*/IN,I?*, (4.10)

with

Tm=f0°°dr ra (0),,(r) , (4.11)

N,,,=f0°°drr¢3,,(r) 14+2iu(r) S Sila,+iv) |,

[=—
(4.12)

where u(r) is step edged distribution of the relativistic
beam of electrons, i.e., u (r)=1, for r <r; and u ()=0 for
r >ry. It shows that the coupling coefficient G,, depends
on the input optical field as well as the mode of the trans-
verse profile. While the eigenvalue «,, for a given system
is fixed, the coupling coefficient G, varies about the
profile of the input optical field. According to previous
work [16,17], the maximum value of G,, is reached with
a,(0)=ayy,. In this case, the complex parameters T,
and N,, may be written as

T, =r5=Jo0tm)ARE —R,,)

1 1
X - : (4.13)
X = X)Xy = Xomp)

rd z Xn |
Npy=—=03x,) 26 S Sixd,—9) 73 [1+25
2 1= R,

2
+1—12’"— (4.14)

Xomp

The effects of the EBW on optical guiding in the FEL
are better clarified by Fig. 8, in which we compare (a) the
maximum growth rate, (b) the ¥ number, and (c) the ini-
tial power coupling G,, of the most unstable mode versus
C for different o with the effective detuning ¥, being
chosen to maximize the growth rate. As Fig. 8(b) illus-
trates, the ¥ number of the most unstable mode for the
FEL is reduced by the EBW, which results in a decrease
of the refractive guiding of the radiation. Figure 8(a)
shows that the growth rate of the most unstable mode de-
creases as o increases. This results from the fact that the
EBW cause emission into many unstable modes and
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reduces the refractive guiding of the most unstable mode.
From Fig. 8(c) it can be seen that the power coupling
coefficient of the most unstable mode for the FEL may be
enhanced by the EBW under proper conditions. In these
plots, the cases of o =0, 0.5, and 1.5 are far from the crit-
ical conditions of mode transition, while the cases of

Re(a)

0.0001 a.01 1 100

10000

[

1

10

[v?|
el

-
T

0.0001 0.01 1 100

FIG. 8. (a) The ¥ number, (b) maximum growth rate Re(a),
and (c) the power coefficient G of the most unstable growth
mode, as determined by three-dimensional theory, are shown as
a function of the parameter C for different value of o with
k=0.6, where v, is chosen to maximize the growth rate of the
most unstable mode.
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o=1 and 2 approach the critical conditions of mode
transition between the zeroth mode and the first mode
and of mode transition between the first mode and the
second mode, respectively. Therefore, as the TFU pa-
rameters x and o are far from the critical conditions for
the mode transition, the index of the refractive guiding
and power coupling coefficients increase with C and ap-
proach the maximum value for large C, which is similar
to parameters in the FEL with an ordinary undulator
[16,17]. However, when the TFU parameters approach
the critical condition of the mode transition, the refrac-
tive guiding increases with C for small and large C, but it
decreases with € as approaches 10; the power coupling
coefficient increases with C for small C, but it decreases
with € for large C.

It should noted that we have assumed that the electron
transverse oscillation scale is smaller than the radial
length structure so that the effect of the relativistic elec-
tron beam bending due to the finite radius of the electron
wiggling may be neglected. Adding the wiggling motion
will decrease gain and increases transverse dimensions
[21]. However, these effects are significant only for
K, >>2yk,, ry. Therefore, the smooth boundary approxi-
mation in our analysis is valid enough.

V. SUMMARY

In this paper, we have developed a theory of the TFU
FEL in the weak-field high-gain regime. A beating wave
in the electron’s longitudinal motion is excited by the
TFU. While the conventional FEL has only one resonant
point in phase space, the TFU FEL has many resonant
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points in phase space, which are induced by the EBW.
Since the EBW may cause emission into many unstable
modes, the growth rate of the most unstable mode de-
creases as o increases. When the TFU parameter k is
comparable to unity, complex interferences occur be-
tween the different resonant points. Due to the complex
interferences between the different resonant points, the
ponderomotive phase velocity of the most unstable mode
may be reduced, resulting in an efficiency enhancement.
In this case, the spectrum shapes of the many modes are
deeply modified by the complex interferences. Our
analysis shows that the zeroth mode dominates the linear
dynamics of the TFU FEL for small o, but the zeroth un-
stable mode may be overcome by the higher (n > 1) un-
stable mode as o increases.

Furthermore, we have studied the effects of the EBW
on optical guiding in the TFU FEL. The three-
dimensional high-gain TFU FELs have many unstable
modes, as in the one-dimensional case. The refractive
guiding of each mode is different from that of the others.
Similar to the refractive guiding in the conventional FEL,
the refractive guiding in the TFU FEL is greatly depen-
dent upon the parameter C. For small C, the diffraction
loss is important and the gain is much smaller than that
of the one-dimensional results. For large 6, the
diffraction loss is negligible and the gain approximately
equals the one-dimensional value. Our numerical results
show that EBW reduces the refractive guiding and thus
increases the diffraction losses. In addition, it is found
that the power coupling coefficient of the most unstable
mode may be enhanced by the EBW, which may lead to a
higher gain.
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FIG. 2. (a) The maximum growth rate Re(a) and (b) the
phase shift rate Im(a+iv,) of the most unstable mode is shown

as a function of x and o, where v, is chosen to maximize the
growth rate of the most unstable mode.



